Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(3): 1156-1171, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513692

RESUMO

In Catharanthus roseus, monoterpenoid indole alkaloids (MIAs) are produced through the cooperation of four cell types, with final products accumulating in specialized cells known as idioblasts and laticifers. To explore the relationship between cellular differentiation and cell type-specific MIA metabolism, we analyzed the expression of MIA biosynthesis in germinating seeds. Embryos from immature and mature seeds were observed via stereomicroscopy, fluorescence microscopy, and electron microscopy. Time-series MIA and iridoid quantification, along with transcriptome analysis, were conducted to determine the initiation of MIA biosynthesis. In addition, the localization of MIAs was examined using alkaloid staining and imaging mass spectrometry (IMS). Laticifers were present in embryos before seed maturation. MIA biosynthesis commenced 12 h after germination. MIAs accumulated in laticifers of embryos following seed germination, and MIA metabolism is induced after germination in a tissue-specific manner. These findings suggest that cellular morphological differentiation precedes metabolic differentiation. Considering the well-known toxicity and defense role of MIAs in matured plants, MIAs may be an important defense strategy already in the delicate developmental phase of seed germination, and biosynthesis and accumulation of MIAs may require the tissue and cellular differentiation.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Monoterpenos/metabolismo , Catharanthus/metabolismo , Germinação , Sementes/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Diferenciação Celular , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Schizophr Bull ; 49(2): 498-506, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542452

RESUMO

OBJECTIVES: Schizophrenia is a mental illness that presents with thought disorders including delusions and disorganized speech. Thought disorders have been regarded as a consequence of the loosening of associations between semantic concepts since the term "schizophrenia" was first coined by Bleuler. However, a mechanistic account of this cardinal disturbance in terms of functional dysconnection has been lacking. To evaluate how aberrant semantic connections are expressed through brain activity, we characterized large-scale network structures of concept representations using functional magnetic resonance imaging (fMRI). STUDY DESIGN: We quantified various concept representations in patients' brains from fMRI activity evoked by movie scenes using encoding modeling. We then constructed semantic brain networks by evaluating the similarity of these semantic representations and conducted graph theory-based network analyses. STUDY RESULTS: Neurotypical networks had small-world properties similar to those of natural languages, suggesting small-worldness as a universal property in semantic knowledge networks. Conversely, small-worldness was significantly reduced in networks of schizophrenia patients and was correlated with psychological measures of delusions. Patients' semantic networks were partitioned into more distinct categories and had more random within-category structures than those of controls. CONCLUSIONS: The differences in conceptual representations manifest altered semantic clustering and associative intrusions that underlie thought disorders. This is the first study to provide pathophysiological evidence for the loosening of associations as reflected in randomization of semantic networks in schizophrenia. Our method provides a promising approach for understanding the neural basis of altered or creative inner experiences of individuals with mental illness or exceptional abilities, respectively.


Assuntos
Esquizofrenia , Semântica , Humanos , Imageamento por Ressonância Magnética , Web Semântica , Esquizofrenia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico
3.
J Plant Res ; 136(1): 107-115, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36357749

RESUMO

The pathways for synthesizing tetrapyrroles, including heme and chlorophyll, are well-conserved among organisms, despite the divergence of several enzymes in these pathways. Protoporphyrinogen IX oxidase (PPOX), which catalyzes the last common step of the heme and chlorophyll biosynthesis pathways, is encoded by three phylogenetically-unrelated genes, hemY, hemG and hemJ. All three types of homologues are present in the cyanobacterial phylum, showing a mosaic phylogenetic distribution. Moreover, a few cyanobacteria appear to contain two types of PPOX homologues. Among the three types of cyanobacterial PPOX homologues, only a hemJ homologue has been experimentally verified for its functionality. An objective of this study is to provide experimental evidence for the functionality of the cyanobacterial PPOX homologues by using two heterologous complementation systems. First, we introduced hemY and hemJ homologues from Gloeobacter violaceus PCC7421, hemY homologue from Trichodesmium erythraeum, and hemG homologue from Prochlorococcus marinus MIT9515 into a ΔhemG strain of E. coli. hemY homologues from G. violaceus and T. erythraeum, and the hemG homologue of P. marinus complimented the E. coli strain. Subsequently, we attempted to replace the endogenous hemJ gene of the cyanobacterium Synechocystis sp. PCC6803 with the four PPOX homologues mentioned above. Except for hemG from P. marinus, the other PPOX homologues substituted the function of hemJ in Synechocystis. These results show that all four homologues encode functional PPOX. The transformation of Synechocystis with G. violaceus hemY homologue rendered the cells sensitive to an inhibitor of the HemY-type PPOX, acifluorfen, indicating that the hemY homologue is sensitive to this inhibitor, while the wild-type G. violaceus was tolerant to it, most likely due to the presence of HemJ protein. These results provide an additional level of evidence that G. violaceus contains two types of functional PPOX.


Assuntos
Cianobactérias , Escherichia coli , Protoporfirinogênio Oxidase/genética , Protoporfirinogênio Oxidase/metabolismo , Escherichia coli/genética , Filogenia , Cianobactérias/genética , Heme/metabolismo , Clorofila/metabolismo
4.
Elife ; 112022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404232

RESUMO

Photosystem I (PSI) is a multi-subunit pigment-protein complex that functions in light-harvesting and photochemical charge-separation reactions, followed by reduction of NADP to NADPH required for CO2 fixation in photosynthetic organisms. PSI from different photosynthetic organisms has a variety of chlorophylls (Chls), some of which are at lower-energy levels than its reaction center P700, a special pair of Chls, and are called low-energy Chls. However, the sites of low-energy Chls are still under debate. Here, we solved a 2.04-Å resolution structure of a PSI trimer by cryo-electron microscopy from a primordial cyanobacterium Gloeobacter violaceus PCC 7421, which has no low-energy Chls. The structure shows the absence of some subunits commonly found in other cyanobacteria, confirming the primordial nature of this cyanobacterium. Comparison with the known structures of PSI from other cyanobacteria and eukaryotic organisms reveals that one dimeric and one trimeric Chls are lacking in the Gloeobacter PSI. The dimeric and trimeric Chls are named Low1 and Low2, respectively. Low2 is missing in some cyanobacterial and eukaryotic PSIs, whereas Low1 is absent only in Gloeobacter. These findings provide insights into not only the identity of low-energy Chls in PSI, but also the evolutionary changes of low-energy Chls in oxyphototrophs.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema I , Clorofila/química , Microscopia Crioeletrônica , Cianobactérias/metabolismo , Transferência de Energia , Complexo de Proteína do Fotossistema I/química
5.
J Plant Res ; 135(3): 473-483, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35243587

RESUMO

Bioactive specialized (secondary) metabolites are indispensable for plant development or adjustment to their surrounding environment. In many plants, these specialized metabolites are accumulated in specifically differentiated cells. Catharanthus roseus is a well-known medicinal plant known for producing many kinds of monoterpenoid indole alkaloids (MIAs). C. roseus has two types of specifically differentiated cells accumulating MIAs, so-called idioblast cells and laticifer cells. In this study, we compared each of the cells as they changed during seedling growth, and found that the fluorescent metabolites accumulated in these cells were differentially regulated. Analysis of fluorescent compounds revealed that the fluorescence observed in these cells was emitted from the compound serpentine. Further, we found that the serpentine content of leaves increased as leaves grew. Our findings suggest that idioblast cells and laticifer cells have different biological roles in MIA biosynthesis and its regulation.


Assuntos
Catharanthus , Catharanthus/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plântula/metabolismo
6.
Plants (Basel) ; 10(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34451778

RESUMO

The red alga 'Bangia' sp. ESS1, a 'Bangia' 2 clade member, responds to heat stress via accelerated asexual reproduction and acquires thermotolerance based on heat-stress memory. However, whether these strategies are specific to 'Bangia' 2, especially 'Bangia' sp. ESS1, or whether they are employed by all 'Bangia' species is currently unknown. Here, we examined the heat-stress responses of 'Bangia' sp. ESS2, a newly identified 'Bangia' clade 3 member, and Bangia atropurpurea. Intrinsic thermotolerance differed among species: Whereas 'Bangia' sp. ESS1 survived at 30 °C for 7 days, 'Bangia' sp. ESS2 and B. atropurpurea did not, with B. atropurpurea showing the highest heat sensitivity. Under sublethal heat stress, the release of asexual spores was highly repressed in 'Bangia' sp. ESS2 and completely repressed in B. atropurpurea, whereas it was enhanced in 'Bangia' sp. ESS1. 'Bangia' sp. ESS2 failed to acquire heat-stress tolerance under sublethal heat-stress conditions, whereas the acquisition of heat tolerance by priming with sublethal high temperatures was observed in both B. atropurpurea and 'Bangia' sp. ESS1. Finally, unlike 'Bangia' sp. ESS1, neither 'Bangia' sp. ESS2 nor B. atropurpurea acquired heat-stress memory. These findings provide insights into the diverse heat-stress response strategies among species from different clades of 'Bangia'.

7.
Curr Biol ; 31(7): 1539-1546.e4, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33571437

RESUMO

The evolution of phenotypic plasticity, i.e., the environmental induction of alternative phenotypes by the same genotype, can be an important mechanism of biological diversification.1,2 For example, an evolved increase in plasticity may promote ecological niche expansion as well as the innovation of novel traits;3 however, both the role of phenotypic plasticity in adaptive evolution and its underlying mechanisms are still poorly understood.4,5 Here, we report that the Chlorophyll d-producing marine cyanobacterium Acaryochloris marina strain MBIC11017 has evolved greater photosynthetic plasticity by reacquiring light-harvesting genes via horizontal gene transfer. The genes, which had been lost by the A. marina ancestor, are involved in the production and degradation of the light-harvesting phycobiliprotein phycocyanin. A. marina MBIC11017 exhibits a high degree of wavelength-dependence in phycocyanin production, and this ability enables it to grow with yellow and green light wavelengths that are inaccessible to other A. marina. Consequently, this strain has a broader solar niche than its close relatives. We discuss the role of horizontal gene transfer for regaining a lost phenotype in light of Dollo's Law6 that the loss of a complex trait is irreversible.


Assuntos
Evolução Biológica , Cianobactérias/genética , Fotossíntese , Ficocianina , Transferência Genética Horizontal , Fotossíntese/genética
8.
Plant Cell Physiol ; 60(5): 1098-1108, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753722

RESUMO

Energy dissipation is crucial for land and shallow-water plants exposed to direct sunlight. Almost all green plants dissipate excess excitation energy to protect the photosystem reaction centers, photosystem II (PSII) and photosystem I (PSI), and continue to grow under strong light. In our previous work, we reported that about half of the photosystem reaction centers form a PSI-PSII megacomplex in Arabidopsis thaliana, and that the excess energy was transferred from PSII to PSI fast. However, the physiological function and structure of the megacomplex remained unclear. Here, we suggest that high-light adaptable sun-plants accumulate the PSI-PSII megacomplex more than shade-plants. In addition, PSI of sun-plants has a deep trap to receive excitation energy, which is low-energy chlorophylls showing fluorescence maxima longer than 730 nm. This deep trap may increase the high-light tolerance of PSI by improving excitation energy dissipation. Electron micrographs suggest that one PSII dimer is directly sandwiched between two PSIs with 2-fold rotational symmetry in the basic form of the PSI-PSII megacomplex in green plants. This structure should enable fast energy transfer from PSII to PSI and allow energy in PSII to be dissipated via the deep trap in PSI.


Assuntos
Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Viridiplantae/metabolismo , Transferência de Energia/fisiologia
9.
Photosynth Res ; 139(1-3): 401-411, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29845382

RESUMO

While subject to illumination, photosystem I (PSI) has the potential to produce reactive oxygen species (ROS) that can cause photo-oxidative damage in oxygenic photoautotrophs. The reaction center chlorophyll in PSI (P700) is kept oxidized in excess light conditions to limit over-excitation of PSI and alleviate the production of ROS. Oxidation of P700 requires a sufficient electron sink for PSI, which is responsible for flavodiiron proteins (FLV) safely dissipating electrons to O2 in cyanobacteria, green algae, and land plants except for angiosperms during short-pulse light (SP) illumination under which photosynthesis and photorespiration do not occur. This fact implies that O2 usage is essential for P700 oxidation but also raises the question why angiosperms lost FLV. Here, we first found that aquatic photoautotrophs in red plastid lineage, in which no gene for FLV has been found, could keep P700 oxidized during SP illumination alleviating the photo-oxidative damage in PSI even without O2 usage. We comprehensively assessed P700 oxidation during SP illumination in the presence and absence of O2 in cyanobacteria (Cyanophyta), green algae (Chlorophyta), angiosperms (Streptophyta), red algae (Rhodophyta), and secondary algae (Cryptophyta, Haptophyta, and Heterokontophyta). A variety of dependencies of P700 oxidation on O2 among these photoautotrophs clearly suggest that O2 usage and FLV are not universally required to oxidize P700 for protecting PSI against ROS damage. Our results expand the understanding of the diverse strategies taken by oxygenic photoautotrophs to oxidize P700 and mitigate the risks of ROS.


Assuntos
Elétrons , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Alga Marinha/metabolismo
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 939-947, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29793056

RESUMO

Analysis of fatty acids from the cyanobacterium Cyanothece sp. PCC 8801 revealed that this species contained high levels of myristic acid (14:0) and linoleic acid in its glycerolipids, with minor contributions from palmitic acid (16:0), stearic acid, and oleic acid. The level of 14:0 relative to total fatty acids reached nearly 50%. This 14:0 fatty acid was esterified primarily to the sn-2 position of the glycerol moiety of glycerolipids. This characteristic is unique because, in most of the cyanobacterial strains, the sn-2 position is esterified exclusively with C16 fatty acids, generally 16:0. Transformation of Synechocystis sp. PCC 6803 with the PCC8801_1274 gene for lysophosphatidic acid acyltransferase (1-acyl-sn-glycerol-3-phosphate acyltransferase) from Cyanothece sp. PCC 8801 increased the level of 14:0 from 2% to 17% in total lipids and the increase in the 14:0 content was observed in all lipid classes. These findings suggest that the high content of 14:0 in Cyanothece sp. PCC 8801 might be a result of the high specificity of this acyltransferase toward the 14:0-acyl-carrier protein.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cyanothece/química , Ácido Mirístico/metabolismo , Synechocystis/química , Aciltransferases/genética , Proteínas de Bactérias/genética , Cyanothece/enzimologia , Cyanothece/genética , Expressão Gênica , Glicolipídeos/química , Glicolipídeos/metabolismo , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Metabolismo dos Lipídeos , Ácido Mirístico/química , Ácido Oleico/química , Ácido Oleico/metabolismo , Ácido Palmítico/química , Ácido Palmítico/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Especificidade da Espécie , Ácidos Esteáricos/química , Ácidos Esteáricos/metabolismo , Especificidade por Substrato , Synechocystis/enzimologia , Synechocystis/genética , Transformação Bacteriana , Transgenes
11.
Genome Announc ; 6(7)2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449379

RESUMO

We report here the whole-genome sequence of Nostoc cycadae strain WK-1, which was isolated from cyanobacterial colonies growing in the coralloid roots of the gymnosperm Cycas revoluta It can provide valuable resources to study the mutualistic relationships and the syntrophic metabolisms between the cyanobacterial symbiont and the host plant, C. revoluta.

12.
J Biosci Bioeng ; 125(5): 572-577, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29269101

RESUMO

The production of alcohols directly from carbon dioxide by engineered cyanobacteria is an attractive technology for a sustainable future. Enhanced tolerance to the produced alcohols would be a desirable feature of the engineered cyanobacterial strains with higher alcohol productivity. We have recently obtained the mutant strains of Synechococcus elongatus PCC 7942 with higher tolerance to isopropanol using a single-cell screening system (Arai et al., Biotechnol. Bioeng., 114, 1771-1778, 2017). Among the mutant strains, SY1043 showed the highest isopropanol tolerance. Interestingly, SY1043 also showed higher tolerance to other alcohols such as ethanol and 1-butanol, however, the mechanisms involved in enhancing this alcohol tolerance were unclear. To reveal the alcohol tolerance mechanism of SY1043, we investigated the relationship between alcohol tolerance and four mutations found in SY1043 by genome resequencing analysis. Isopropanol tolerance was enhanced by amino acid substitution (Leu285Pro) in a hypothetical protein encoded by Synpcc7942_0180 of the wild type strain TA1297. TA4135, into which this mutation was introduced, showed a same tendency of tolerance to other alcohols (ethanol and 1-butanol).


Assuntos
2-Propanol/metabolismo , Adaptação Biológica/genética , Ensaios de Triagem em Larga Escala/métodos , Mutação , Análise de Célula Única/métodos , Synechococcus/genética , Synechococcus/metabolismo , Dióxido de Carbono/metabolismo , Análise Mutacional de DNA , Farmacorresistência Bacteriana/genética , Etanol/metabolismo , Organismos Geneticamente Modificados
13.
J Phys Chem B ; 121(39): 9081-9090, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28889741

RESUMO

The light-harvesting mechanisms in the three strains of Prochlorococcus marinus, CCMP1986, CCMP1375, and CCMP2773, grown under blue and red light-emitting diodes (LEDs) at two intensity levels were investigated. The blue LED was divinyl chlorophyll b (DV-Chl b) selective and the red LED was DV-Chl a selective. Under the red LED, the relative amount of DV-Chl b in CCMP1375 and CCMP2773 decreased and the relative amount of zeaxanthin increased in CCMP1375. Furthermore, the pigment composition of cells of CCMP1375 grown under red LED was remodified when they were transplanted under the blue LED. Picosecond-time-resolved fluorescence of the LED-grown Prochlorococcus was measured, and the excitation-energy-transfer efficiency between DV-Chl a did not significantly change for the different LED colors or intensities; however, a change in the pigment composition of the DV-Chl b-rich strains (CCMP1375 and CCMP2773) was observed. It appears that peripheral antenna responds to light conditions, with small modifications in the photosystems.


Assuntos
Clorofila/química , Luz , Pigmentos Biológicos/química , Prochlorococcus/classificação , Absorção Fisiológica , Clorofila A
14.
Biotechnol Bioeng ; 114(8): 1771-1778, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28401637

RESUMO

Enhancement of alcohol tolerance in microorganisms is an important strategy for improving bioalcohol productivity. Although cyanobacteria can be used as a promising biocatalyst to produce various alcohols directly from CO2 , low productivity, and low tolerance against alcohols are the main issues to be resolved. Nevertheless, to date, a mutant with increasing alcohol tolerance has rarely been reported. In this study, we attempted to select isopropanol (IPA)-tolerant mutants of Synechococcus elongatus PCC 7942 using UV-C-induced random mutagenesis, followed by enrichment of the tolerant candidates in medium containing 10 g/L IPA and screening of the cells with a high growth rate in the single cell culture system in liquid medium containing 10 g/L IPA. We successfully acquired the most tolerant strain, SY1043, which maintains the ability to grow in medium containing 30 g/L IPA. The photosynthetic oxygen-evolving activities of SY1043 were almost same in cells after 72 h incubation under light with or without 10 g/L IPA, while the activity of the wild-type was remarkably decreased after the incubation with IPA. SY1043 also showed higher tolerance to ethanol, 1-butanol, isobutanol, and 1-pentanol than the wild type. These results suggest that SY1043 would be a promising candidate to improve alcohol production using cyanobacteria. Biotechnol. Bioeng. 2017;114: 1771-1778. © 2017 Wiley Periodicals, Inc.


Assuntos
Álcoois/administração & dosagem , Tolerância a Medicamentos/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Mutação/genética , Synechococcus/efeitos dos fármacos , Synechococcus/genética , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Especificidade da Espécie , Synechococcus/classificação
15.
Photosynth Res ; 133(1-3): 235-243, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28185041

RESUMO

The light-harvesting antennas of oxygenic photosynthetic organisms capture light energy and transfer it to the reaction centers of their photosystems. The light-harvesting antennas of cyanobacteria and red algae, called phycobilisomes (PBSs), supply light energy to both photosystem I (PSI) and photosystem II (PSII). However, the excitation energy transfer processes from PBS to PSI and PSII are not understood in detail. In the present study, the energy transfer processes from PBS to PSs in various cyanobacteria and red algae were examined in vivo by selectively exciting their PSs or PBSs, and measuring the resulting picosecond to nanosecond time-resolved fluorescences. By observing the delayed fluorescence spectrum of PBS-selective excitation in Arthrospira platensis, we demonstrated that energy transfer from PBS to PSI via PSII (PBS→PSII→PSI transfer) occurs even for PSI trimers. The contribution of PBS→PSII→PSI transfer was species dependent, being largest in the wild-type of red alga Pyropia yezoensis (formerly Porphyra yezoensis) and smallest in Synechococcus sp. PCC 7002. Comparing the time-resolved fluorescence after PSs- and PBS-selective excitation, we revealed that light energy flows from CP43 to CP47 by energy transfer between the neighboring PSII monomers in PBS-PSII supercomplexes. We also suggest two pathways of energy transfer: direct energy transfer from PBS to PSI (PBS→PSI transfer) and indirect transfer through PSII (PBS→PSII→PSI transfer). We also infer that PBS→PSI transfer conveys light energy to a lower-energy red chlorophyll than PBS→PSII→PSI transfer.


Assuntos
Cianobactérias/metabolismo , Transferência de Energia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Rodófitas/metabolismo , Cinética , Espectrometria de Fluorescência , Fatores de Tempo
16.
Plant Cell Physiol ; 58(1): e10, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011869

RESUMO

The identification of protein complexes is important for the understanding of protein structure and function and the regulation of cellular processes. We used blue-native PAGE and tandem mass spectrometry to identify protein complexes systematically, and built a web database, the protein co-migration database (PCoM-DB, http://pcomdb.lowtem.hokudai.ac.jp/proteins/top), to provide prediction tools for protein complexes. PCoM-DB provides migration profiles for any given protein of interest, and allows users to compare them with migration profiles of other proteins, showing the oligomeric states of proteins and thus identifying potential interaction partners. The initial version of PCoM-DB (launched in January 2013) included protein complex data for Synechocystis whole cells and Arabidopsis thaliana thylakoid membranes. Here we report PCoM-DB version 2.0, which includes new data sets and analytical tools. Additional data are included from whole cells of the pelagic marine picocyanobacterium Prochlorococcus marinus, the thermophilic cyanobacterium Thermosynechococcus elongatus, the unicellular green alga Chlamydomonas reinhardtii and the bryophyte Physcomitrella patens. The Arabidopsis protein data now include data for intact mitochondria, intact chloroplasts, chloroplast stroma and chloroplast envelopes. The new tools comprise a multiple-protein search form and a heat map viewer for protein migration profiles. Users can compare migration profiles of a protein of interest among different organelles or compare migration profiles among different proteins within the same sample. For Arabidopsis proteins, users can compare migration profiles of a protein of interest with putative homologous proteins from non-Arabidopsis organisms. The updated PCoM-DB will help researchers find novel protein complexes and estimate their evolutionary changes in the green lineage.


Assuntos
Arabidopsis/metabolismo , Briófitas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Bases de Dados de Proteínas , Fotossíntese , Proteínas de Algas/metabolismo , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Cianobactérias/classificação , Cianobactérias/metabolismo , Eletroforese/métodos , Internet , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem/métodos , Interface Usuário-Computador
17.
J Phycol ; 52(3): 329-38, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27273528

RESUMO

Carotenoid composition is very diverse in Rhodophyta. In this study, we investigated whether this variation is related to the phylogeny of this group. Rhodophyta consists of seven classes, and they can be divided into two groups on the basis of their morphology. The unicellular group (Cyanidiophyceae, Porphyridiophyceae, Rhodellophyceae, and Stylonematophyceae) contained only ß-carotene and zeaxanthin, "ZEA-type carotenoids." In contrast, within the macrophytic group (Bangiophyceae, Compsopogonophyceae, and Florideophyceae), Compsopogonophyceae contained antheraxanthin in addition to ZEA-type carotenoids, "ANT-type carotenoids," whereas Bangiophyceae contained α-carotene and lutein along with ZEA-type carotenoids, "LUT-type carotenoids." Florideophyceae is divided into five subclasses. Ahnfeltiophycidae, Hildenbrandiophycidae, and Nemaliophycidae contained LUT-type carotenoids. In Corallinophycidae, Hapalidiales and Lithophylloideae in Corallinales contained LUT-type carotenoids, whereas Corallinoideae in Corallinales contained ANT-type carotenoids. In Rhodymeniophycidae, most orders contained LUT-type carotenoids; however, only Gracilariales contained ANT-type carotenoids. There is a clear relationship between carotenoid composition and phylogenetics in Rhodophyta. Furthermore, we searched open genome databases of several red algae for references to the synthetic enzymes of the carotenoid types detected in this study. ß-Carotene and zeaxanthin might be synthesized from lycopene, as in land plants. Antheraxanthin might require zeaxanthin epoxydase, whereas α-carotene and lutein might require two additional enzymes, as in land plants. Furthermore, Glaucophyta contained ZEA-type carotenoids, and Cryptophyta contained ß-carotene, α-carotene, and alloxanthin, whose acetylenic group might be synthesized from zeaxanthin by an unknown enzyme. Therefore, we conclude that the presence or absence of the four enzymes is related to diversification of carotenoid composition in these three phyla.


Assuntos
Carotenoides/química , Filogenia , Rodófitas/química , Rodófitas/classificação
18.
Photosynth Res ; 130(1-3): 183-191, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26942582

RESUMO

Photosynthetic light-harvesting complexes, found in aquatic photosynthetic organisms, contain a variety of carotenoids and chlorophylls. Most of the photosynthetic dinoflagellates possess two types of light-harvesting antenna complexes: peridinin (Peri)-chlorophyll (Chl) a/c-protein, as an intrinsic thylakoid membrane complex protein (iPCP), and water-soluble Peri-Chl a-protein, as an extrinsic membrane protein (sPCP) on the inner surface of the thylakoid. Peri is a unique carotenoid that has eight C=C bonds and one C=O bond, which results in a characteristic absorption band in the green wavelength region. In the present study, excitation relaxation dynamics of Peri in solution and excitation energy transfer processes of sPCP and the thylakoid membranes, prepared from the photosynthetic dinoflagellate, Symbiodinium sp., are investigated by ultrafast time-resolved fluorescence spectroscopy. We found that Peri-to-Chl a energy transfer occurs via the Peri S1 state with a time constant of 1.5 ps or 400 fs in sPCP or iPCP, respectively, and that Chl c-to-Chl a energy transfer occurs in the time regions of 350-400 fs and 1.8-2.6 ps.


Assuntos
Dinoflagelados/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A , Transferência de Energia , Espectrometria de Fluorescência , Tilacoides/metabolismo
19.
J Phys Chem B ; 119(51): 15593-600, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26631221

RESUMO

Prochlorococcus, a unique marine picocyanobacterium, contains the divinyl- (DV-) type chlorophylls (Chls), DV-Chl a and DV-Chl b, as its photosynthetic pigments. We comprehensively investigated the light-harvesting mechanisms in three strains of Prochlorococcus marinus (P. marinus) at physiological temperature (293 K) by ultrafast time-resolved fluorescence (TRF), steady-state fluorescence, and absorption measurements. These strains differ in their relative amounts of DV-Chl a, DV-Chl b, and carotenoids and in the pigment coupling conditions. All of the strains showed ultrafast excitation energy transfer from DV-Chl b to DV-Chl a, and the low-light-adapted strains, P. marinus CCMP1375 and CCMP2773, exhibited relatively higher DV-Chl b contents than P. marinus CCMP1986. It appears that carotenoid is another important antenna pigment, especially in the low-light-adapted strains (CCMP1375 and CCMP2773), that transfers the excitation energy to lower-energy DV-Chl a.


Assuntos
Clorofila/análise , Transferência de Energia , Prochlorococcus/química , Espectrometria de Fluorescência
20.
Life (Basel) ; 5(1): 432-46, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25809962

RESUMO

Many of the cyanobacterial species found in marine and saline environments have a gene encoding a putative nitrite transporter of the formate/nitrite transporter (FNT) family. The presumed function of the gene (designated nitM) was confirmed by functional expression of the gene from the coastal marine species Synechococcus sp. strain PCC7002 in the nitrite-transport-less mutant (NA4) of the freshwater cyanobacterium Synechococcus elongatus strain PCC7942. The NitM-mediated nitrite uptake showed an apparent Km (NO2-) of about 8 µM and was not inhibited by nitrate, cyanate or formate. Of the nitM orthologs from the three oceanic cyanobacterial species, which are classified as α-cyanobacteria on the basis of the occurrence of Type 1a RuBisCO, the one from Synechococcus sp. strain CC9605 conferred nitrite uptake activity on NA4, but those from Synechococcus sp. strain CC9311 and Prochlorococcus marinus strain MIT9313 did not. A strongly conserved hydrophilic amino acid sequence was found at the C-termini of the deduced NitM sequences from α-cyanobacteria, with a notable exception of the Synechococcus sp. strain CC9605 NitM protein, which entirely lacked the C-terminal amino acids. The C-terminal sequence was not conserved in the NitM proteins from ß-cyanobacteria carrying the Type 1b RuBisCO, including the one from Synechococcus sp. strain PCC7002. Expression of the truncated nitM genes from Synechococcus sp. strain CC9311 and Prochlorococcus marinus strain MIT9313, encoding the proteins lacking the conserved C-terminal region, conferred nitrite uptake activity on the NA4 mutant, indicating that the C-terminal region of α-cyanobacterial NitM proteins inhibits the activity of the transporter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...